Anharmonic thermodynamic properties and phase boundary across the postperovskite transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MgSi</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>

نویسندگان

چکیده

To address the effects of lattice anharmonicity across perovskite to post-perovskite transition in MgSiO$_3$, we conduct calculations using phonon quasiparticle (PHQ) approach. The PHQ is based on \textit{ab initio} molecular dynamics and, principle, captures full anharmonicity. Free energies thermodynamic limit ($N \rightarrow \infty$) are computed temperature-dependent dispersions within gas model. Systematic results anharmonic properties and phase boundary reported. Both local density approximation (LDA) generalized gradient (GGA) performed provide confident constraints these properties. Anharmonic demonstrated by comparing with those obtained quasiharmonic (QHA). inadequacy QHA indicated its overestimation thermal expansivity Gr\"{u}neisen parameter converged isochoric heat capacity high-temperature limit. has a Clapeyron slope ($dP/dT$) that increases temperature. This result contrasts nearly zero curvature boundary. Anharmonicity bends lower temperatures at high pressures. Implications for double-crossing mantle geotherm discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational and thermodynamic properties of MgSiO3 postperovskite

[1] Phonon dispersions and vibrational density of states of MgSiO3 postperovskite, the new high-pressure phase of MgSiO3 perovskite, are calculated as a function of pressure up to 180 GPa using density-functional perturbation theory. The calculated frequencies are then used to determine the thermal contribution to the Helmholtz free energy within the quasi-harmonic approximation. The equation o...

متن کامل

Topology of the postperovskite phase transition and mantle dynamics.

The postperovskite (ppv) phase transition occurs in the deep mantle close to the core-mantle boundary (CMB). For this reason, we must include in the dynamical considerations both the Clapeyron slope and the temperature intercept, T(int), which is the temperature of the phase transition at the CMB pressure. For a CMB temperature greater than T(int), there is a double crossing of the phase bounda...

متن کامل

Deep mantle structure and the postperovskite phase transition.

Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in term...

متن کامل

Anharmonic Algebraic Model of Thermodynamic Properties of Diatomic Molecules

An algebraic model based on Lie-algebraic techniques is applied to the analysis of thermodynamic vibrational properties of diatomic molecules. The local anharmonic effects are described by a Morse-like potential and corresponding anharmonic bosons associated with the U(2) algebra. A vibrational high temperature partition function and the related thermodynamic functions are derived in terms of t...

متن کامل

Perovskite to postperovskite transition in NaFeF3.

The GdFeO3-type perovskite NaFeF3 transforms to CaIrO3-type postperovskite at pressures as low as 9 GPa at room temperature. The details of such a transition were investigated by in situ synchrotron powder diffraction in a multianvil press. Fit of the p-V data showed that the perovskite phase is more compressible than related chemistries with a strongly anisotropic response of the lattice metri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.106.054103